

Dealing with 3D issues in cloud-vegetation interactions

Alexander Marshak
NASA/GSFC

Clouds with Low Optical (Water) Depth ("CLOWD")

- Over 50% of the warm liquid water clouds at the SGP site have LWP < 100 g m⁻²
- MWR's uncertainty is 20-30 g m⁻² (i.e., errors of 20% to over 100%)
- Aerosol indirect effect research needs accurate measurements of LWP and effective radius

courtesy of Dave Turner, PNNL
Presentation at the ARM STM 2004

NASA

Intercomparison between different retrievals of cloud LWP

(easy case: Variable Thickness Stratus Case)

Results from 14 Mar in the ARM 2000 Cloud IOP at the ARM SGP site, a day (esp. around 21 UT) when the cloud was particularly stratiform and uniform

Retrieval of cloud optical depth

Common approach is to use downward fluxes:

- broadband pyranometers
- (Leontieva & Stamnes, 1994; Boers, 1997)
- narrowband radiometers

(Min and Harrison, 1996, Min et al., 2003)

Ground-based retrieval from measurements of zenith radiance

zenith radiance in NIR from simulated 3D clouds

Three major problems with inferring cloud optical depth:

- (i) lack of one-to-one relationship even for "plane-parallel" 1D clouds;
- (ii) a strong influence of 3D cloud structure on measured radiance;
- (iii) no retrieval for 3D values larger than max of 1D.

AERONET

AERONET is a ground based monitoring network that consists of identical multi-channel **Cimel** radiometers for assessing aerosol optical properties

Cimel channels and surface reflectance

Objectives

- to exploit the sharp spectral contrast in vegetated surface reflectance between **0.67** and **0.87** μm to retrieve cloud properties from measurements of zenith radiance;
- to study possibility of simultaneous retrieval of droplet effective radius from measurements of zenith radiance at 0.87 and 1.64 μm spectral regions

Cimel radiance measurements (GSFC, Bld. 33): four channels (440, 670, 870, and 1020 nm)

Two-Channel Narrow Field of View (NFOV)

September 29, 2004; ARM SGP

Two-channel cloud retrievals

Satellite retrieval of τ and $r_{\rm e}$ from Nakajima-King, JAS 1990

Surface retrieval of τ and A_c from Marshak et al., JAS 2004

2D Look-Up Tables "NIR vs. RED" plane

 τ is cloud optical depth $A_{\rm c}$ is "effective" cloud fraction

Where are Cimel data-points?

July 28, 2002 ARM CART site in OK

Cimel measurements taken around 13:45, 13:58 and 14:11 UT

Image from Total Sky Imager

14:00 UT

 $A_{\rm c}$ = 0.85 is not a visual cloud fraction but a "radiatively effective" one that also compensates for cloud horizontal inhomogeneity not accounted for by 1D RT.

Retrieval examples

Cloud optical depth retrieved from:

• Cimel (spectral zenith radiance)

• **MWR** (Microwave Radiometer) assuming $r_e = 7 \mu m$

August 8, 2002;18:00 UT CART site

• MFRSR (Multi-Filter Rotating Shadowband Radiometer)

Retrievals from broken Cu clouds

Show MOVIES

I3RC 14 Oct, 2005 Alexander Marshak 14

Local climatology

(Santa Barbara, CA: 2003)

Cloud optical depth

Alexander Marshak 15

Local climatology

(ARM CART cite, OK: 2001-2003)

Cloud optical depth

I3RC 14 Oct, 2005 Alexander Marshak 16

Cloud droplet effective radius from Cimel

Combined retrieval of optical depth τ , (effective) cloud fraction A_c , and droplet effective radius r_e

MODIS surface refl. around Bld. 33 at GSFC averaged over 8 days starting from July 27, 2004. Data are 11 by 11 km with 500 m resolution (22 by 22 pixels).

Assuming that surface albedos: α ₆₇₀, α ₈₇₀, α ₁₆₄₀ are known,

we have

$$I_{670} = I_{670} (\tau, A_c, r_e)$$

 $I_{870} = I_{870} (\tau, A_c, r_e)$
 $I_{1640} = I_{1640} (\tau, A_c, r_e)$

Two-step retrieval of

optical depth τ , (effective) cloud fraction A_c , and droplet effective radius r_e

1st step:

$$I_{670} = I_{670} (\tau, A_c, r_e)$$

 $I_{870} = I_{870} (\tau, A_c, r_e)$

2nd step:

$$I_{870} = I_{870} (\tau, A_c, r_e)$$

 $I_{1640} = I_{1640} (\tau, A_c, r_e)$

NASA

August 2, 2004; GSFC

Some theory behind the RED vs. NIR method

(Marshak et al., 2004)

$$I = I_o + \frac{\rho I_s T_o}{1 - \rho R}$$

$$T_o = 1 - A_c + A_c \cdot T_{o,pp}$$

$$I_{RED}(\tau, A_c) = I_{o,RED}(\tau) + \frac{\rho_{RED}I_{s,RED}(\tau) \cdot \left[1 - A_c + A_cT_{o,pp,RED}(\tau)\right]}{1 - \rho_{RED}R_{RED}(\tau)}$$

$$I_{NIR}(\tau, A_c) = I_{o,NIR}(\tau) + \frac{\rho_{NIR}I_{s,NIR}(\tau) \cdot \left[1 - A_c + A_cT_{o,pp,NIR}(\tau)\right]}{1 - \rho_{NIR}R_{NIR}(\tau)}$$

Some theory behind the COUPLED method

(Barker and Marshak, 2001, Knyazikhin and Marshak, 2005)

$$I = I_o + \rho I_s \frac{T_o}{1 - \rho R} = T$$

$$I_{NIR}(x) - I_{RED}(x) = \int_{x' \in S} \left[F_{NIR}^{\uparrow}(x') - F_{RED}^{\uparrow}(x') \right] \cdot J(x, x') dx',$$

$$I_{RED} = I_{o,RED} + \rho_{RED} T_{RED} I_{s,RED}$$

$$I_{NIR} = I_{o,NIR} + \rho_{NIR} T_{NIR} I_{s,NIR}$$

$$r_{\lambda}(x) = \frac{\int_{x' \in S} F_{\lambda}^{\uparrow}(x') J(x, x') dx'}{F_{\lambda}^{\uparrow}(x')}$$

Assumptions:

$$I_{o,NIR} = I_{o,RED}$$

$$I_{s,NIR} = I_{s,RED} = I_s$$

$$I_{NIR} - I_{RED} = (\rho_{NIR}T_{NIR} - \rho_{RED}T_{RED})I_{s}(\tau)$$

$$I_{s}(\tau) = \frac{I_{NIR} - I_{RED}}{F_{NIR}^{\uparrow} - F_{RED}^{\uparrow}}$$

$$r_{\lambda}(x) \approx \eta(J) = BF|_{F=1} = \int_{x' \in S} J(x, x') dx'$$

where $\eta(J)$ is the max eigenvalue

$$\eta(J) \approx \frac{I_{NIR}(x) - I_{RED}(x)}{F_{NIR}^{\uparrow}(x) - F_{RED}^{\uparrow}(x)}.$$

$$I_s(x,\tau) \approx \frac{I_{NIR}(x) - I_{RED}(x)}{F_{NIR}^{\uparrow}(x) - F_{RED}^{\uparrow}(x)}$$

Summary

The Main Ideas

- use three wavelengths:
 - one in RED (670 nm) where vegetation albedo is low
 - one in NIR (870 nm) where vegetation albedo is high
 - one in MIR (1640 nm) where cloud droplets absorb
- retrieve cloud optical depth and effective cloud fraction using the NIR vs. RED plane and then effective radius using NIR vs. MIR plane

The Results (so far)

- looks promising; it largely removes 3D effects;
- it is not the final answer but a big improvement against any singlewavelength retrievals;
- it can
 - fill (cloud) gaps in AERONET aerosol optical depth retrievals
 - estimate (effective) cloud fraction and
 - droplet effective radius
 even for broken clouds

Dealing with 3D issues in cloud-vegetation interactions

Alexander Marshak
NASA/GSFC

Thanks to:

Christine Chiu (UMBC)
Yuri Knyazikhin (Boston University)
Howard Barker (Canadian Meteo)
Warren Wiscombe (NASA/GSFC)
Anthony Davis (LANL)
Brent Holben (NASA/GSFC)

NDV

Seasonal applicability

$$NDVI = \frac{NIR - RED}{NIR + RED}$$

ARM CART site, OK

Bondville, IL

I3RC 14 Oct, 2005

Alexander Marshak

25